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Abstract
In the context of two particularly interesting non-Hermitian models in quantum
mechanics we explore the relationship between the original Hamiltonian H and
its Hermitian counterpart h, obtained from H by a similarity transformation,
as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns
out to be just a scaled harmonic oscillator, which explains the form of its
spectrum. However, the transformation is not unique, which also means that
the observables of the original theory are not uniquely determined by H alone.
The second model we consider is the original PT-invariant Hamiltonian, with
potential V = igx3. In this case the corresponding h, which we are only
able to construct in perturbation theory, corresponds to a complicated velocity-
dependent potential. We again explore the relationship between the canonical
variables x and p and the observables X and P.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Ta, 02.60.Lj

1. Introduction

There has recently been a great deal of interest in the properties of non-Hermitian Hamiltonians,
particularly those which possess PT symmetry, of which the prototype is the Hamiltonian

H = 1
2 (p2 + x2) + igx3, (1)

first studied in detail by Bender and Boettcher [1], following an earlier suggestion by Bessis.
This Hamiltonian was shown numerically to have a real, positive spectrum, as indeed

were its generalizations to

H = 1
2 (p2 + x2) + gx2(ix)N . (2)

A rigorous proof of the reality of the spectrum was subsequently given by Dorey et al [2].
In the intervening time many examples of non-Hermitian Hamiltonians were found, often

complex generalizations of well-known soluble potentials such as the Morse potential, which
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all possessed real spectra for some range of the parameters. However, the focus then moved
on to more difficult problems posed by such Hamiltonians, namely whether they possessed
a consistent interpretational framework. The problem arises because in such theories the
natural metric in the space of quantum mechanical states does not necessarily possess the
attribute of positive definiteness which is the basis of the probabilistic interpretation of quantum
mechanics.

In the context of PT-invariant theories a solution was proposed by Bender et al [3], who
introduced a new operator C and a new scalar product, the CPT scalar product, which was
indeed positive definite. This solves the problem in principle, but the difficulty is that the new
product is dynamically determined; that is, one needs to know the eigenvalues and eigenvectors
of the Hamiltonian in order to construct C. This can be done for soluble models, but for the
prototype Hamiltonian of equation (1) only a perturbative expansion for C is available.

In a parallel development, Mostafazadeh [4] introduced the notion of pseudo-Hermiticity.
A Hamiltonian is said to be pseudo-Hermitian with respect to a positive-definite, Hermitian
operator η if it satisfies

H † = ηHη−1. (3)

In the case of PT-symmetric Hamiltonians the role of η is played by PC. In [5] it was found
convenient to write C in the form C = eQP , where Q was a Hermitian operator satisfying
PQ = −QP . Hence in this case η = e−Q, which is indeed a positive-definite Hermitian
operator.

The positive-definite metric takes the form

〈〈ϕ,ψ〉〉 = 〈ϕ, ηψ〉, (4)

where 〈 〉 denotes the usual scalar product.
Further, the observables of the theory were identified as pseudo-Hermitian operators A

with respect to η. In the case of PT-symmetric theories where the Hamiltonian is an even
function of p, which includes the class of equation (2), this coincides with the definition [6]
that A must satisfy Ã = (CPT)A(CPT).

Mostafazadeh went on to show that under a similarity transformation implemented by
ρ = √

η such a Hamiltonian is equivalent to a Hermitian Hamiltonian h, according to

H = ρ−1hρ. (5)

Again, a similar relation holds for observables in general: if a is an observable in the Hermitian
theory described by h, the corresponding observable in the pseudo-Hermitian theory is

A = ρ−1aρ. (6)

In this paper we wish to explore these relationships in detail in two models. One, initially
presented by Swanson [7], is a soluble model which can be transformed by a similarity
transformation (in fact a whole class of such transformations) to a simple harmonic oscillator.
Here we discuss the different possible similarity transformations, and in the simplest case,
where η = η(x), identify the observables. The second model, which can only be treated
in perturbation theory, is the original igx3 Hamiltonian of equation (1). In this case we
construct h to order g4 and the observables to order g2. The resulting h is a complicated,
momentum-dependent object, in contrast to the simple form of H. This means that although
the two theories are formally equivalent, the non-Hermitian H is the only practical starting
point.
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2. The Swanson Hamiltonian

An interesting Hamiltonian, which is PT-symmetric, but not symmetric, is that considered by
Swanson [7]:

H = ωa†a + αa2 + βα†2
, (7)

where a and a† are harmonic oscillator annihilation and creation operators for unit frequency
and ω, α and β are real constants. This Hamiltonian has a real, positive spectrum in a certain
range of the parameters.

In fact for ω > α+β, the spectrum of equation (7) is that of the simple harmonic oscillator
with frequency � =

√
ω2 − 4αβ. Swanson showed this by constructing a transformation

operator U(= η) of Bogoliubov type which reduced the original problem to that of the simple
harmonic oscillator. This gave the following form1 for U:

U = exp

{
1

2

(
g3

g1
− g2

g4

)
a†2

}
exp

(
1

2
wd2

)
exp(cd ln z), (8)

where w = (g3g4 − g1g2)
/
g2

4, z = g4/g1, and c and d are Bogoliubov transforms of a and a†:

c = g1a
† − g3a, d = g4a − g2a

†.

The gi are subject to the three conditions

g1g4 − g2g3 = 1, g2g4ω + g2
2α + g2

4β = 0, g1g3ω + g2
1α + g2

3β = 0,

which means that there is a one-parameter family of solutions, depending on g1, say. Geyer
et al [8] noted this non-uniqueness of U, in contrast to the uniquely defined operator C, or
Q, of [3, 5], and proposed that the ambiguity could be removed by the requirement that not
only the Hamiltonian but a given observable (or in general an ‘irreducible set of observables’)
should be pseudo-Hermitian with respect to η.

In fact what this amounts to in this case is that η is a function of that particular observable.
A very simple form of η can be found [8] by requiring it to be a function of the number
operator N = a†a. In fact, with S(= ρ = η

1
2 ) given by

S = exp
[

1
4N ln(α/β)

]
, (9)

it is easy to see, using the commutation relations [N,A] = 2B, [N,B] = 2A, where
A := a†2

+ a2, B := a†2 − a2, that

h = SHS−1 = 1
2p2(ω − 2

√
αβ) + 1

2x2(ω + 2
√

αβ), (10)

a scaled harmonic oscillator with frequency �.
The condition [S,N ] = 0 gives the additional constraint g1g3 = g2g4 on the parameters

gi : however, it is still not easy to see the equivalence between the three-exponential form of
Swanson, equation (8) and the single-exponential form of equation (9).

While this transformation is adequate to obtain the spectrum of H, it is not suitable for
calculations in wave mechanics, where explicit eigenfunctions are needed. An alternative
transformation, which immediately gives the form of the wavefunctions, is obtained by
choosing η to be a function of x. Indeed, it is easily seen that the required form of ρ

is

ρ = exp
[

1
2λx2

]
, (11)

where

λ = β − α

ω − α − β
.

1 Taking the gi as real.
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By virtue of the commutation relations [x2, A] = 2B, [x2, B] = 2A + 4C, [x2, C] = −B,
where C := N + 1

2 , the similarity transformation ρHρ−1 now gives

h = ρHρ−1 = 1

2
p2(ω − α − β) +

1

2
x2 ω2 − 4αβ

ω − α − β
, (12)

a different scaled harmonic oscillator with the same frequency �.
This transformation corresponds to the method of reducing the original Schrödinger

differential equation for ψ :[
1

2
ω

(
x2 − d2

dx2

)
+

1

2
(α + β)

(
x2 +

d2

dx2

)
+ (α − β)

(
x

d

dx
+

1

2

)]
ψ = Eψ,

to that of a simple harmonic oscillator for ϕ by writing ψ = Wϕ and choosing W

so that there are no linear derivatives acting on ϕ. The resulting condition on W is
(ω − α − β)W ′ + (β − α)xW = 0, which gives W = ρ−1. The resulting wavefunctions
are

ψn = Nn e− 1
2 x2(λ+µ2)Hn(µx), (13)

where

µ = (ω2 − 4αβ)
1
4

(ω − α − β)
1
2

,

the Hn are the Hermite polynomials and Nn is the appropriate normalization factor. Clearly
these are not orthonormal as they stand; rather they are orthonormal with respect to the weight
factor η = ρ2 = eλx2

. That is,∫
ψ∗

m(x) eλx2
ψn(x) dx = δmn, (14)

in accordance with equation (4).
If one takes the point of view that the original Hamiltonian H is obtained by the inverse

similarity transformation from the h of equation (12), then the independent observables of the
non-Hermitian H theory are obtained by the same inverse transformation on those of h, which
are x and p. Thus

X := e− 1
2 λx2

x e
1
2 λx2 = x, P := e− 1

2 λx2
p e

1
2 λx2 = p − iλx. (15)

Equally H can be written in the form of equation (12), with p replaced by P. This approach,
namely deriving a non-Hermitian Hamiltonian by the above transformation of p, was in fact
originally taken by Ahmed [9] before the paper of Swanson.

However, a rather puzzling situation arises, in that what we define as the observables
associated with H depends on the particular transformation ρ that is used to convert it to a
simple harmonic oscillator. Thus, apart from the transformation used by Geyer et al and that
just discussed, it would be equally possible to take ρ as a function of p alone. In that case we
would have simple wavefunctions in momentum space, and the observables would be p and a
transformed version of x. As already discussed above, there is in fact a one-parameter family
of transformations, and hence of observables.

3. The igx3 theory

For the Hamiltonian of equation (1) the Q operator has been constructed [3] up to O(g7) in
the form Q = ∑

r grQr . To first order2

Q1 = − 4
3p3 − 2xpx. (16)

2 In fact this result is accurate up to second order: Q contains only odd powers of g.
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We are thus in a position to construct h, which to this order is given by

h = e− 1
2 gQ1H e

1
2 gQ1 . (17)

By virtue of the property [Q1,H0] = 2H1, where H0 ≡ 1
2 (p2 + x2) and H1 ≡ ix3, this

becomes

h(x, p) = H0 − 1
4g2[Q1,H1]

= H0 + 3g2
(

1
2x4 + S2,2 − 1

6

)
+ O(g4),

(18)

where S2,2 = (x2p2 + xp2x + p2x2)/3. As indicated, the next correction is of order g4 by
virtue of the structure of the commutation relations of the Qr .

This result is interesting in several respects. Firstly it is already quite complicated,
compared with the simple form of H, and that complication only increases in higher orders.
Secondly it has an x4 component with a positive sign, as for a conventional quartic oscillator.
Thirdly it is momentum dependent, containing a number of terms involving p.

The calculation can be continued, using

Q3 = 128

15
p5 +

40

3
S3,2 + 8S1,4 − 12p,

where the Sm,n are fully symmetrized polynomials of degree m in x and n in p. The fourth-order
contribution is

h4 = g4[−(7/2)x6 − (51/2)S2,4 − 36S4,2 + 2p6 + (15/2)x2 + 27p2],

which now has a negative coefficient for the x6 term, but also contains a term in p6. If
we were able to sum up the perturbation series, the higher powers of p = −i∂/∂x would
ultimately produce a non-local function. Clearly this is not a Hamiltonian that one would have
contemplated in its own regard, were it not derived from equation (1). It is for this reason
that we disagree with the contention of Mostafazadeh [10] that ‘a consistent probabilistic
PT-symmetric quantum theory is doomed to reduce to ordinary QM’.

Turning to the question of the independent observables of the system, these are obtainable
from those of the Hermitian theory, namely x and p, by the transformations

X = e
1
2 Qx e− 1

2 Q P = e
1
2 Qp e− 1

2 Q. (19)

To second order these are

X = x + ig(x2 + 2p2) + g2(−x3 + 2pxp),

P = p − ig(xp + px) + g2(2p3 − xpx).
(20)

Again, these calculations can be carried out to higher order, but the results are not particularly
illuminating.

It is, however, interesting to compare the ground-state expectation values

〈〈ψ0, Xψ0〉〉 = 〈
ψ0, e− 1

2 Qx e− 1
2 Qψ0

〉 = 0

and

〈〈ψ0, xψ0〉〉 = 〈ψ0, e−Qxψ0〉 = − 3
2 ig + O(g3).

The first must be real, and is in fact zero by symmetry, whereas the second is pure imaginary.
This is unacceptable for an observable in quantum mechanics. In the generalization to quantum
field theory, however, where x(t) → ϕ(x, t), the field itself is not necessarily an observable,
so a non-vanishing expectation value may be acceptable.

Note that Q itself is an observable, since it is Hermitian and commutes with itself. It also
has the property that

Q(x, p) = e
1
2 QQ(x, p) e− 1

2 Q = Q(X,P ). (21)



1746 H F Jones

That is, Q, originally written as a function of x and p, is in fact the same function of the
observables X and P.

Since X and P are the observables, it might be tempting to express H in terms of
them, instead of the original x and p. Unfortunately this does not lead to any appreciable
simplification, because in fact

H = e
1
2 Qh(x, p) e− 1

2 Q = h(X, P ).

That is, the initial, non-Hermitian Hamiltonian H, when expressed in terms of the observables
X and P, is of the same form as h: a complicated, momentum-dependent function.

4. Discussion

In the context of two particularly interesting models, we have discussed the relation between
the original non-Hermitian Hamiltonian H and its Hermitian counterpart h, and have exhibited
the observables of the theory. In the case of the Swanson Hamiltonian of equation (9), there is a
one-parameter choice for the transformation operator η, and correspondingly the observables
of the theory are not determined uniquely by the Hamiltonian but depend on that choice.
For the ix3 model of equation (1) we explicitly constructed the corresponding Hermitian
Hamiltonian in perturbation theory, noting its complicated, momentum-dependent character.
We constructed the observables X and P in perturbation theory and discussed their relation to
the canonical x, p.
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